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IV. ConcLUsION

We have presented a semi-analytical analysis of general multilay-
ered multiconductor transmission lines with arbitrary cross section
conductors using the M -strips model. This procedure has proved
its ability to compute in a fast and accurate way the characteristic
matrices of the analyzed transmission lines. It has been also shown
how the A -strip model combined with the Wheeler’s incremental
inductance rule yields sufficiently accurate results for the conductor
losses assuming strong skin effect. The studied examples have shown
that rectangular conductors and even circular conductors can be
efficiently modeled with a reasonable number of thin strips. This
latter fact and the enhanced numerical treatment here applied suggests
that our scheme may be used as a good basis for CAD of general
transmission lines.
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A Numerical Method of Evaluating Electromagnetic
Fields in a Generalized Anisotropic Medium

Hung-Yu Yang

Abstract—A transition matrix method is commonly used to deal with
the problems of either plane-wave scattering from or the Green’s function
of a generalized anisotropic medium. This method, although rigorous ana-
Iytically, introduces numerical breakdown, when the layers are electrically
thick and the waves are evanescent. A variable transformation method
is developed to deal with the exponentially-growing terms associated
with exponential-matrix method. The proposed scheme is suitable for the
numerical analysis of generalized anisotropic layers including ferrites,
magneto-plasmas, chiral layers, and bianistropic layers.

I. INTRODUCTION

In the past, there have been considerable interest in the investi-
gation of the interaction of electromagnetic waves with anisotropic
materials. The classical formulation for antennas on layered media
employing a combination of TE and TM vector potential functions
limits the applications to isotropic or uniaxial media. In recent
years, the interest in the technology of printed circuit elements on
anisotropic substrates has stirred the investigation of electromagnetic
waves interaction with generalized anisotropic layered media. A
spectral exponential 4 x 4 matrix method has been developed
to deal with embedded dipoles in or scattering from a layered
generalized anisotropic structure [1]-[6]. The exponential matrix
method is a useful numerical method in dealing with waves in
media with arbitrary anisotropy. There, the derivation of analytic
form of waves is often complicate and tedious if not impossible.
Most published research in the area of electromagnetic waves in
layered anisotropic media dealt with the analytic aspect of the
problem. The full-wave numerical implementation of the spectral
matrix method has been applied for microstrip transmission-lines
[71-19] and for printed antennas [10], [11]. A critical step in the
exponential-matrix method is to develop the transition matrices which
relate the electromagnetic fields at one planar interface to the others.
This method although elegant analytically has inherent deficiency
in the numerical implementation. Problems arise when the wave
numbers in the direction of inhomogeneity are complex-valued. If the
layers are electrically thick enough, the transition matrices become
numerically singular and can no longer pass the complete information
of fields. The physical explanation is that from one layer interface to
another, part of the waves die out before reaching the interface. The
remaining propagating waves are degenerate.

As a result, the 4 x 4 transition matrix is singular. This problem
is particularly serious in dealing with antennas and circuits on
anisotropic media, where the plane wave representations of fields
always include the evanescent plane wave spectrum. This numeri-
cal singularity (or overflow) problem occurs often in dealing with
isotropic or uniaxial media, where the problem is overcome in the
analytic formulation, by normalizing the variables such that we deal
with the “tanh” functions instead of the “cosh” or “sinh™ functions.

In this paper, a scheme utilizing variable transformation is de-
veloped. The idea is to extract the large exponential terms in
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the formulation and transform them into the variables which are
used to represent fields at each interface. This procedure ensure
all the information of fields in one interface is effectively passed
on to the next interface. The proposed numerical scheme and its
numerical implementation is described in Section II. An example of
the application is discussed in Section IIL

II. VARIABLE TRANSFORMATION IN MATRIX EXPONENTIAL METHOD

For the convenience of discussion, we consider the problem of
a plane wave scattering from a planar (z-y plane) generalized
anisotropic layer (0 < z < d) shown in Fig. 1. The approach for
the problem with current sources is similar as will be seen shortly.
The extension of the method to deal with multilayer generalized
anisotropic media will be discussed elsewhere. In the spectral expo-
nential matrix method, the 2z and y spectral field components in the
anisotropic medium derived from Maxwell’s curl equations with some
algebraic manipulations become four coupled first-order differential
equations [1]-[11] which in a matrix form are

gz[@z:(z)] = [A][d(=)] )
where
koHo(2) + by Hy(2)
~ _ ksz(Z) - kay(z)
[W(=)] = kpEo(2) + kyEy(2) | @
kyEo(z) = ko By (2)

E., E,, H,, and H, are the Fourier transforms of the tangential
field components and [A] is a 4 X 4 matrix where the elements are
functions of spectral variables k., k, and material parameters. If
one defines the 4 x 4 matrix [¢] as the eigenvector matrix with the
eigenvalues A;, 7 = 1,2,3,4 of [A], the solution of (1) is

[6(d7)] = [T(@)]5(0)] ©
where
et 0. 0 0
T@l=0] oy e o[BI @
0 0 0 e

The electromagnetic fields in the air (z > d¥ and z < 07) can be
derived in a straightforward manner by the combination of TE and
TM vector potential functions. This result can be shown as
[54/k% — KkZa
w€0l~7
JVEkE—k3b
| —wpoa
[—7+/k2 — k3¢
P wepd
—Whoé

[P(d")] =

and

where @, b, ¢ and d are the quantities to be determined from the
following equation

[(d)] = [T(D[H(07)] = [Qline (6)

and k = \/kZ + k2, where [Q]inc is related to the incident plane
wave. For the problem with a current source, the right-hand side
of (6) should be the corresponding spectral current component. The
exponential matrix method described above is rigorous analytically.
However, in numerical implementation, this method often break-
downs. Without the loss of generality, it is assumed that Re(\:) >
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Variable Transformation Method
- - - - Transition Matrix Cascade Method
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Fig. 1. Reflection from an in-plane biased ferrite layer. Biased field (Ho)
1000 Gauss in the & direction, magnetization: 2250 Gauss, TM incidence with
6; = 30° and ¢; = 40°, ¢y = 12.8, and d = 3 cm.
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Re(A2) > Re(As) > Re{As). In many practical applications
when Re(eAld) > 1, the transition matrix defined in (4) becomes
numerically singular. As a result, the numerical inversion of the
matrix equation in (6) provides erroneous results.

In (4), the transition matrix [T'(d)] can be written as

[T(d)] = e™¥[A1] + 29[ 4,] (7

where the singular matrices [A] and [A3] do not contain any term
that grows exponentially
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Note that [A;] is obtained from (4) by replacing the terms of 29,

e*3? and €*? with 0 and replacing e*1¢ with 1. Since [4;] is a
singular matrix with rank one, it can be shown that

ay
az

[A1]9(07) = (& + Bd) (10)

as
a4

where a, 8, (o # ) and a; with ¢ == 1,2, 3, or 4 are associated with
the eigenvectors and are found numerically. In order to overcome the
overflow problem, the following variable transformations are defined

(@ + Ad)e*? = u an
and

(6+ d)e* = v (12)
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where v and v are the new variables replacing ¢ and d. With the
variable transformations, we have

[T(d)][(07)]
ap —j/k? — k2
_ a2 u (A2—2;)d —wea
=, +—a_B[Az]e P =T
a4 —u.J,uo
JBV/k? — K3
v Qwep
—[4 . 13
+a—/3[ 2] —aj\/k* — kg (13
Bwﬂo

The new formulation in (13) assures that the matrix equations
in (6) is well-behaved and always invertable numerically. As a
result, the overflow and singularity problem in finding the spectral
clectromagnetic fields is overcome.

III. AN EXAMPLE: SCATTERING FROM A BIASED FERRITE LAYER

A practical example of the case of scattering from a biased ferrite
layer is shown in Fig. 1. It is known that the biased ferrites may
support extraordinary waves [12]. The extraordinary wave is an
envanescent wave. When the decay factor of this evanescent wave
is large, the transition matrix cascade method is no longer adequate.
The results of the reflection from a biased ferrite layer is shown
in Fig. 1 for both methods. It is seen that there exists a frequency
band where ordinary transition matrix method provides ridiculous
results. Outside this frequency band, two methods produce identical
results. The asymptotic form of the eigenvalue corresponding to an
extraordinary wave, when p = 0, is found as

A= :I:L\/kg + erk?
\/ﬁ

where p and s are the common notations for the elements of the
ferrite permeability tensor. It is seen from (14) that when 4 is near
zero, (0 < ) corresponds to a large positive eigenvalue and (1 < 0)
corresponds to a large purely imaginary eigenvalue. If 4 = 0 occurs
at fo. for frequency a little less than fo, the waves in ferrite are
highly oscillatory. Also, when the frequency is a little larger than
fo, large real eigenvalue results in the failure of transition matrix
cascade method due to the round-off errors and the singularity of
the transition matrix. The computations are carried out in a PC-486
model with Lahey Fortran 77 compiler.

(14)
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All the numbers are double precision. The run time for each data
point is less than a tenth second.

IV. CONCLUSION

A numerical algorithm was developed for the computation of
electromagnetic fields in a generalized anisotropic structure. The
proposed method using variable transformation overcomes the diffi-
culty frequently encountered in the transition matrix cascade method,
without increasing computational time or memory. The method
discussed in this paper may be extended to deal with multi-layered
structures.
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