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IV. CONCLUSION

We have presented a semi-analytical analysis of general mtdtilay-

ered mtrlticonductor transmission lines with arbitrary cross section

conductors using the M-strips model. This procedure has proved

its ability to compute in a fast and accurate way the characteristic

matrices of the analyzed transmission lines. It has been also shown

how the M-strip model combined with the Wheeler’s incremental

inductance rule yields sufficiently accurate results for the conductor

losses assuming strong skin effect. The studied examples have shown

that rectangular conductors and even circular conductors can be

efficiently modeled with a reasonable number of thin strips. This

latter fact and the enhanced numerical treatment here applied suggests

that our scheme may be used as a good basis for CAD of general

transmission lines.
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A Numerical Method of Evaluating Electromagnetic

Fieldsin aGeneralized Anisotropic Medium

Hung-Yu Yang

Abstract-A transition matrix method is commonly used to deal with
the problems of either plane-wave scattering from or the Green’s function
of a generalized anisotropic medium. This method, although rigorous ana-
lytically, introduces numerical breakdown, when the layers are electrically
thick and the waves are evanescent. A variable transformation method
is developed to deal with the exponentially-growing terms associated

with exponential-matrix method. Theproposed scheme issuitable for the

numerical analysis of generalized anisotropic layers including ferrites,
magneto-plasmas, chiral layers, and bianistropic layers.

I. INTRODUCTION

In the past, there have been considerable interest in the investi-

gation of the interaction of electromagnetic waves with anisotropic

materials. The classical formulation for antennas on layered media

employing a combination of TE and TM vector potential functions

limits the applications to isotropic or uniaxial media. In recent

years, the interest in the technology of printed circuit elements on

anisotropic substrates has stirred the investigation of electromagnetic

waves interaction with generalized anisotropic layered media, A

spec~al exponential 4 x 4 ma~ix method has been developed
to deal with embedded dipoles in or scattering from a layered

generalized anisotropic structure [1]–[6]. The exponential matrix

method is a useful numerical method in dealing with waves in

media with arbitrary anisotropy. There, the derivation of analytic

form of waves is often complicate and tedious if not impossible.

Most published research in the area of electromagnetic waves in

layered anisotropic media dealt with the analytic aspect of the

problem. The full-wave numerical implementation of the spectral

matrix method has been applied for microstrip transmission-lines

[7]-[9] and for printed antennas [10]. [11]. A critical step in the

exponential-matrix method is to develop the transition matrices which

relate the electromagnetic fields at one planar interface to the others.

This method although elegant analytically has inherent deficiency

in the numerical implementation. Problems arise when the wave

numbers in the direction of inhomogeneity are complex-valued. If the

layers are electrically thick enough, the transition matrices become

numerically singular andcanno longer pass the complete information

of fields. The physical explanation is that from one layer interface to

another, part of the waves die out before reaching the interface. The

remaining propagating waves are degenerate.

As aresult, the4 x 4transition matrix is singular. This problem

is particularly serious in dealing with antennas and circuits on

anisotropic media, where the plane wave representations of fields

always include the evanescent plane wave spectrum. This numeri-

cal singularity (or overflow) problem occurs often in dealing with

isotropic or uniaxial media, where the problem is overcome in the

analytic formulation, by normalizing the variables such that we deal

with the “tanh” functions instead of the “cosh” or’’sinh” functions.

In this paper, a scheme utilizing variable transformation is de-

veloped. The idea is to extract the large exponential terms in
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the formulation and transform them into the variables which are

used to represent fields at each interface. This procedure ensure

all the information of fields in one interface is effectively passed

on to the next interface. The proposed numerical scheme and its

numerical implementation is described in Section II. An example of

the application is discussed in Section III.

II. VARIABLE TRANSFORMATION IN MATRIX EXPONENTIAL METHOD

For the convenience of discussion, we consider the problem of

a plane wave scattering from a planar (a-y plane) generalized

anisotropic layer (O < z < d) shown in Fig. 1. The approach for

the problem with current sources is similar as will be seen shortly.

The extension of the method to deal with multilayer generalized

anisotropic media will be discussed elsewhere. In the spechal expo-

nential matrix method, the z and y spectral field components in the

anisotropic medium derived from Maxwell’s curl equations with some

algebraic manipulations become four coupled first-order differential

equations [1 ]–[ 11] which in a matrix form are

:[~(z)l = [4[~(z)l

where

“(’)]=[ 1:311

(1)

(2)

Ez, EY, H., and HY are the Fourier transforms of the tangential

field components and [A] is a 4 x 4 matrix where the elements are

functions of spectral variables !-tZ, kg and material parameters. If

one defines the 4 x 4 matrix [~] as the eigenvector matrix with the

eigenvalues J,, i = 1,2,3,4 of [A], the solution of (1) is

[i(~-)1 = [~(41[mo)l (3)

where

‘T(d)]=’i]K’ ‘:’ ‘!3’ ~JIJ]-l ‘4)

The electromagnetic fields in the air (z ~ d+ and z < 0– ) can be

derived in a straightforwm-d manner by the combination of TE and

TM vector potentiaf functions. This result can be shown as

[1
~v’q~

[~(d+)] =
ueob

..i dq~

—Wpoii

[1
–~l/q~

and [IJ(o-)] = omjd
(5)

–~ d-:d
—w/LlJi5

where ii, ;, Z and d are the quantities to be determined from the

following equation

[~(d+)]- [~(~)][~(o-)]= [Q]inc (6)

and k = ~-, where [Q] i.. is related to the incident plane

wave. For the problem with a current source, the right-hand side

of (6) should be the corresponding spectral current component. The

exponential matrix method described above is rigorous analytically.

However, in numerical implementation, this method often break-

downs. Without the loss of generality, it is assumed that Re(/11 ) >
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Fig. 1. Reflection from an in-plane biased ferrite layer. Biased field (170)
1000 Gauss in the & direction, magnetization: 2250 Gauss, TM incidence with

0, = 30° and ~, = 40°, Cf = 12.8, and d = 3 cm.

Re(& ) ~ Re(& ) ~ Re(& ). In many practical applications

when Re(e~ Id) >> 1, the transition matrix defined in (4) becomes

numerically singular. As a result, the numerical inversion of the

matrix equation in (6) provides erroneous results.

In (4), the transition matrix [T(d)] can be written as

[T(d)] = e’Id[AI] + e’2d[Az]

where the singular matrices [Al ] and [Az]

that grows exponentially

r1000

(7)

10 not contain any term

and

rooo 01

(8)

Note that [AI ] is obtained from (4) by replacing the terms of e~’d,
+d

, and e~4d with O and replacing e~1d with 1. Since [A 1] is a

singular matrix with rank one, it can be shown that

[1
al

[A1]~(O-) = (M5+ fki) :: (lo)

a4

where a, /3, (~ # ,6’) and a; with i = 1, 2,3, or 4 are associated with

the eigenvectors and are found numerically. In order to overcome the

overflow problem, the following variable transformations are defined

(cst + /?ci)e’ld = u (11)

and

(6+ ci)e”d = u (12)
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where u and u are the new variables replacing 5 and ~. With the

variable transformations, we have

[T(d) ][tj(O

[

al

a?
=U

The new

in (6) is

(13)

formulation in (13) assures that the matrix equations

well-behaved and always insertable numerically. As a

result, the overflow and singularity problem in finding the spectral

electromagnetic fields is overcome.

III. AN EXAMPLE SCATTERING FROM A BIASED FERRITE LAYER

A practical example of the case of scattering from a biased ferrite

layer is shown in Fig. 1. It is known that the biased ferrites may

support extraordinary waves [12]. The extraordinary wave is an

evanescent wave. When the decay factor of this evanescent wave

is large, the transition matrix cascade method is no longer adequate.

The results of the reflection from a biased ferrite layer is shown

in Fig. 1 for both methods. It is seen that there exists a frequency

band where ordinary transition matrix method provides ridiculous

results. Outside this frequency band, two methods produce identical

results. The asymptotic form of the eigenvalue corresponding to an

extraordinary wave, when p z O, is found as

(14)

where p and N are the common notations for the elements of the

ferrite permeability tensor. It is seen from (14) that when p is near

zero, (O < ~~)corresponds to a large positive eigenvalue and (IL < O)

corresponds to a large purely imaginary eigenvalue. If p = O occurs

at .fo. for frequency a little less than fO, the waves in ferrite are

highly oscillatory. Also, when the frequency is a little larger than

io, large real eigenvahre results in the failure of transition matrix

cascade method due to the round-off errors and the singularity of

the transition matrix. The computations are carried out in a PC-486

model with Lahey Fortran 77 compiler.

All the numbers are double precision. The run time for each data

point is less than a tenth second.

IV. CONCLUSION

A numerical algorithm was developed for the computation of

electromagnetic fields in a generalized anisotropic structure. The

proposed method using variable transformation overcomes the diffi-

culty frequently encountered in the transition matrix cascade method,

without increasing computational time or memory. The method

discussed in this paper may be extended to deal with multi-layered

structures.
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